Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(48): 10027-10041, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458841

RESUMO

Reactive oxygen species (ROS) have become an effective "weapon" for cancer therapy due to their strong oxidation and high anti-tumor activity. Photodynamic therapy (PDT) is one of the classical methods to induce reactive oxygen species. Therefore, an ultraminiature palladium ruthenium alloy (sPdRu) and Ru(II) were combined with thermally responsive phase change materials (PCMs). Polypyridyl-complex (RCE) co-encapsulation was performed to obtain thermally responsive nanoparticles (PdRu-RCE@PCMNPs) for multimodal synergistic anti-breast cancer therapy. On the one hand, the thermosensitive PCM protective layer can realize the slow release of sPdRu, and then catalyze the production of oxygen from tumor endogenous H2O2 to perform RCE-mediated PDT. At the same time, sPdRu further increased ROS levels through peroxidase (POD) activity. On the other hand, sPdRu has high photothermal conversion efficiency and can be effectively used for photothermal therapy and photodynamic therapy. Importantly, PdRu-RCE@PCM NPs not only can effectively inhibit primary tumor growth, but also can inhibit tumor metastasis. In addition, due to the effective accumulation of sPdRu and RCE, PdRu-RCE@PCM NPs also show excellent fluorescence and photothermal imaging capabilities of tumors, which can be used for tumor tracing and evaluation of treatment. Accordingly, PdRu-RCE@PCM NPs are useful in treating primary tumors and inhibiting tumor metastasis.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Rutênio , Camundongos , Animais , Humanos , Feminino , Espécies Reativas de Oxigênio , Rutênio/farmacologia , Paládio/farmacologia , Paládio/uso terapêutico , Peróxido de Hidrogênio/uso terapêutico , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias da Mama/patologia
2.
J Colloid Interface Sci ; 605: 851-862, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371428

RESUMO

Photodynamic therapy (PDT) of tumor has achieved good results, but the treatment efficiency is not high due to the lack of effective photosensitizers and tumor hypoxia. In this study, iridium dioxide nanoparticles (IrO2 NPs) with excellent photothermal/photodynamic effects and catalase like activity were synthesized by a simple method. The combination of glucose oxidase (GOx) and IrO2 NPs is formed by hyaluronic acid (HA), which have the activities of glucose oxidase and catalase, can target tumor sites and form in situ amplifiers in tumor microenvironment (IrO2-GOx@HA NPs). Firstly, GOx convert the high levels of glucose in the tumor to hydrogen peroxide (H2O2), and then IrO2 NPs convert H2O2 to oxygen (O2), which can enhance the type II of PDT. IrO2 NPs also can be used as a thermosensitive agent for photothermal therapy (PTT). In cancer cells, IrO2-GOx@HA NPs-mediated amplifier enhances the effect of type II of PDT, aggravating the apoptosis of breast cancer (4T1) cells and cooperating with its own PTT to further improve the overall treatment effect. Under simulated hypoxic conditions of tumor tissue, it was found that IrO2-GOx@HA NPs treatment can effectively relieve hypoxia inside tumor tissue. In addition, the results in vivo further proved that, IrO2-GOx@HA NPs can enhance the role of II PDT and cooperate with PTT to treat breast cancer effectively. The results highlight the prospect of IrO2-GOx@HA NPs in controlling and regulating tumor hypoxia to overcome the limitations of current cancer therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias , Fotoquimioterapia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Peróxido de Hidrogênio , Irídio , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Microambiente Tumoral
3.
Nanoscale ; 13(37): 15576-15589, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524338

RESUMO

Multifunctional nanoagents integrating multiple therapeutic and imaging functions hold promise in the field of non-invasive and precise tumor therapies. However, the complex preparation process and uncertain drug metabolism of nanoagents loaded with various therapeutic agents or imaging agents greatly hinder its clinical applications. Developing simple and effective nanoagents that integrate multiple therapeutic and imaging functions remain a huge challenge. Therefore, a novel strategy based on in situ hydrogen release is proposed in this work: aminoborane (AB) was loaded onto mesoporous polydopamine nanoparticles (MPDA NPs) as a prodrug for hydrogen production, and then, PEG was modified on the surface of nanoparticles (represented as AB@MPDA-PEG). MPDA NPs not only act as photothermal agents (PTA) with high photothermal conversion efficiency (808 nm, η = 38.72%) but also as the carriers of AB accumulated in the tumor through enhanced permeability and retention (EPR) effect. H2 gas generated by AB in the weak acid conditions of the tumor microenvironment (TME) not only was used to treat tumors via a combination of hydrogen and photothermal therapies but also serves as a US and CT contrast agent, providing accurate guidance for tumor treatment. Finally, in vivo and in vitro investigation suggest that the designed multifunctional nanosystem not only showed excellent properties such as high hydrogen-loading capacity, long-lasting sustained hydrogen release ability and excellent biocompatibility but also achieve selective PTT/hydrogen therapies and US/CT bimodal imaging functions, which can effectively guide antitumor therapies. The proposed hydrogen gas-based strategy for combination therapies and bimodal imaging integration holds promise as an efficient and safe tumor treatment for future clinical translation.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Terapia Combinada , Humanos , Hidrogênio , Neoplasias/terapia , Fototerapia , Microambiente Tumoral
4.
J Mater Chem B ; 9(37): 7835-7847, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586144

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disease. Repairing damaged nerves and promoting nerve regeneration are key ways to relieve AD symptoms. However, due to the lack of effective strategies to deliver nerve growth factor (NGF) to the brain, achieving neuron regeneration is a major challenge for curing AD. Herein, a ROS-responsive ruthenium nanoplatform (R@NGF-Se-Se-Ru) drug delivery system for AD management by promoting neuron regeneration and Aß clearance was investigated. Under near-infrared (NIR) irradiation, nanoclusters have good photothermal properties, which can effectively inhibit the aggregation of Aß and disaggregate Aß fibrils. Interestingly, the diselenide bond in the nanoclusters is broken, and the nanoclusters are degraded into small ruthenium nanoparticles in the high reactive oxygen species (ROS) environment of the diseased area. Besides, NGF can promote neuronal regeneration and repair damaged nerves. Furthermore, R@NGF-Se-Se-Ru efficiently crosses the blood-brain barrier (BBB) owing to the covalently grafted target peptides of RVG (R). In vivo studies demonstrate that R@NGF-Se-Se-Ru nanoclusters decrease Aß deposits, inhibit Aß-induced cytotoxicity, and promote neurite outgrowth. The study confirms that promoting both Aß clearance and neuron regeneration is an important therapeutic target for anti-AD drugs and provides a novel insight for AD therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Portadores de Fármacos/química , Nanoestruturas/química , Fator de Crescimento Neural/uso terapêutico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Hemólise/efeitos dos fármacos , Humanos , Raios Infravermelhos , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Selênio/química
5.
Biomater Sci ; 9(15): 5330-5343, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34190241

RESUMO

Hypoxia in the solid tumor microenvironment (TME) can easily induce tumor recurrence, metastasis, and drug resistance. The use of man-made nanozymes is considered to be an effective strategy for regulating hypoxia in the TME. Herein, Ru@MnO2 nanozymes were constructed via an in situ reduction method, and they showed excellent photothermal conversion efficiency and catalytic activity. The anti-tumor drug DOX with fluorescence was loaded on the Ru@MnO2 nanozymes, and an erythrocyte membrane was further coated on the surface of the Ru@MnO2 nanozymes to construct nanozymes with on-demand release abilities. The erythrocyte membrane (RBCm) enhances the biocompatibility of the Ru@MnO2 nanozymes and prolongs their circulation time in the blood. Ru@MnO2 nanozymes can catalyze endogenous H2O2 to produce O2 to relieve hypoxia in the TME to enhance the efficacy of the photothermal therapy/chemotherapy of cancer. In vitro studies confirmed that the Ru@MnO2 nanozymes showed good tumor penetration abilities and a synergistic anti-tumor effect. Importantly, both in vivo and in vitro studies have confirmed that the oxygen supply in situ enhanced the efficacy of the PTT/chemotherapy of cancer. Accordingly, this study demonstrated that Ru@MnO2 nanozymes can be used as an effective integrated system allowing catalysis, photothermal therapy, and chemotherapy for cancer management.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Peróxido de Hidrogênio , Compostos de Manganês , Neoplasias/tratamento farmacológico , Óxidos , Oxigênio , Microambiente Tumoral
6.
Nanotechnology ; 32(48)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34153958

RESUMO

Selenium nanoparticles (Se NPs) have potential antitumor activity and immune properties. However, the mechanism between its antitumor activity and nanoparticle morphology has not been evaluated. Therefore, a simple method was used to synthesize three special shapes of Se NPs, which are fusiform, flower and spherical. Compared with fusiform selenium nanoparticles (Se NPs (S)) and flower-shaped selenium nanoparticles (Se NPs (F)), spherical selenium nanoparticles (Se NPs (B)) have better cell absorption effect and stronger antitumor activity. HRTEM showed that Se NPs (B) entered the nucleus through endocytosis and inhibited tumor angiogenesis by targeting basic fibroblast growth factor (bFGF). Se NPs (B) can competitively inhibit the binding of bFGF to fibroblast growth factor receptor through direct binding to bFGF, down-regulate the expression of bFGF in human umbilical vein endothelial cells (HUVEC), and significantly reduce the MAPK/Erk and P13K/AKT pathways activation of signaling molecules to regulate HUVEC cell migration and angiogenesis. These findings indicate that Se NPs have a special role in antitumor angiogenesis. This research provides useful information for the development of new strategies for effective drug delivery nanocarriers and therapeutic systems.


Assuntos
Inibidores da Angiogênese/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Nanopartículas , Selênio , Transdução de Sinais/efeitos dos fármacos , Inibidores da Angiogênese/química , Animais , Núcleo Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Nanopartículas/química , Neovascularização Patológica/prevenção & controle , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/química , Selênio/farmacologia
7.
Nanoscale ; 12(43): 22317-22329, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33146638

RESUMO

The reactive oxygen species (ROS)-mediated anti-cancer therapy that shows the advantages of tumor specificity, high curative effect, and less toxic side-effects has powerful potential for cancer treatment. However, hypoxia in the tumor microenvironment (TME) and low penetrability of photosensitizers further limit their clinical application. Here, we present a composite core-shell-structured nanozyme (MS-ICG@MnO2@PEG) that consists of a mesoporous silica nanoparticle (MS) core and a MnO2 shell loaded with the photosensitizer indocyanine green (ICG) and then coated with PEG as the photodynamic/chemodynamic therapeutic agent for the ROS-mediated cancer treatment. On the one hand, MS-ICG@MnO2@PEG catalyzes H2O2 to produce O2 for enhanced photodynamic therapy (PDT), and on the other hand, it consumes GSH to trigger a Fenton-like reaction that generates *OH, thus enhancing the chemodynamic therapy (CDT). At the cellular level, MS-ICG@MnO2@PEG nanozymes exhibit good biocompatibility and induce the production of ROS in 4T1 tumor cells. It disrupts the redox balance in tumor cells affecting the mitochondrial function, and specifically kills the tumor cells. In vivo, the MS-ICG@MnO2@PEG nanozymes selectively accumulate at tumor sites and inhibit tumor growth and metastasis in 4T1 tumor-bearing mice. Accordingly, this study shows that the core-shell nanozymes can serve as an effective platform for the ROS-mediated breast cancer treatment by enhancing the combination of PDT and CDT.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Compostos de Manganês , Camundongos , Óxidos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...